

Metal Composite Power Inductor (Thin Film) Specification Sheet

CIGT252012LMR68MNE (2520 / EIA 1008)

APPLICATION

Smart phones, Tablet, Wearable devices, Power converter modules, etc.

FFATURES

Small power inductor for mobile devices
Low DCR structure and high efficiency inductor for power circuits.
Monolithic structure for high reliability
Free of all RoHS-regulated substances
Halogen free

DIMENSION

RECON	IMEND	ED LAN	ID F
			c
+ B		- <u>-</u> -	+

BECOMMENDED LAND

	Unit : mm
TYPE	2520
Α	1.2
В	8.0
С	2.0

TYPE Dimension [mm] L W T D 2520 2.5±0.2 2.0±0.2 1.2 max 0.55±0.25

DESCRIPTION

Part no.	Size	Thickness	Inductance	Inductance tolerance	DC Resistance [mΩ]		Rated DC Current (Isat) [A] Rated DC Current (Ira		rrent (Irms) [A]	
	[inch/mm] [mm] (max)	[uH] (%)	Max.	Тур.	Max.	Тур.	Max.	Тур.		
CIGT252012LMR68MNE	1008/2520	1.2	0.68	±20	33	28	4	4.7	3.56	4

- * Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)
- * DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent
- * Maximum allowable DC current: Value defined when DC current flows and the initial value of inductance has decreased by 30% or

when current flows and temperature has risen to 40 $^{\circ}$ C whichever is smaller. (Reference: ambient temperature is 25 $^{\circ}$ C \pm 10)

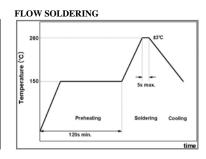
(Isat): Allowable current in DC saturation: The DC saturation allowable current value is specified when the decrease of

the initial inductance value at 30% (Reference: ambient temperature is 25°C±10)

(Irms) : Allowable current of temperature rise : The temperature rise allowable current value is specified when temperature of

the inductor is raised 40°C by DC current. (Reference: ambient temperature is 25°C±10)

- * Absolute maximum voltage : Absolute maximum voltage DC 20V.
- * Operating temperature range : -40 to +125°C (Including self-temperature rise)


PRODUCT IDENTIFICATION

<u>CIG</u>	<u>T</u>	<u> 2520</u>	<u>12</u>	<u>LM</u>	<u>R68</u>	<u>M</u>	<u>N</u>	<u>E</u>
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)

- (1) Power Inductor
- (3) Dimension (2520: 2.5mm x 2.0mm)
- (5) Remark (Characterization Code)
- (7) Toleranc (M:±20%)
- (8) Internal Code
- (9) Packaging (C:paper tape, E:embossed tape)
- (2) Type (T: Metal Composite Thin Film Type)
- (4) Thicknes (12: 1.2mm)
- (6) Inductan (R68: 0.68 uH)

RECOMMENDED SOLDERING CONDITION

REFLOW SOLDERING 280 280 180 150 Preheating Soldering Cooling 60s max. 60 ~ 120s 30 ~ 60s

IRON SOLDERING	
Temperature of	280°C max.
Soldering Iron Tip	280 C max.
Preheating	150 ℃ min.
Temperature	130 C min.
Temperature	ΔT≤130℃
Differential	$\Delta 1 \ge 130 \text{ C}$
Soldering Time	3sec max.
Soldering Time	JSCC IIIax.
Wattage	50W max

PACKAGING

Packaging Style	Quantity(pcs/reel)
Embossed Taping	2500 pcs

Item	Specified Value		Test Condition	
Solderability	More than 90% of terminal electrode should be soldered newly.	•	for 4±1 seconds, and preheated at , the specimen shall be immersed in seconds.	
Resistance to Soldering	No mechanical damage. Remaining terminal Electrode: 75% min. Inductance change to be within ±20% to the initial.		for 4±1 seconds, and preheated at , the specimen shall be immersed in ±0.5 seconds.	
Thermal Shock (Temperature Cycle test)	No mechanical damage Inductance change to be within ±20% to the initial.	Repeat 100 cycles under -40±3°C for 30 min → 85		
High Temp. Humidity Resistance Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, 85%RH, for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.		
Low Temperature Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PC at -55±2°C for 500±12 ho Measure the test items at humidity for 24hours.		
High Temperature Test	No mechanical damage Inductance change to be within ±20% to the initial.	hours.	B. Exposure at 125±2°C for 500±12 fter leaving at normal temperature and	
High Temp. Humidity Resistance Loading Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, 85%RH, Rated (Measure the test items at humidity for 24 hours.	Current for 500±12 hours. fter leaving at normal temperature and	
High Temperature Loading Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, Rated Current for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.		
Reflow Test	No mechanical damage Inductance change to be within ±20% to the initial	Peak 260±5℃, 3 times		
Vibration Test	No mechanical damage Inductance change to be within ±20% to the initial.		B. Vibrate as apply 10~55Hz, 1.5mm each of three(X,Y,Z) axis (total 6 hours).	
	No mechanical damage	Bending Limit; 2mm Test Speed; 1.0mm/sec. Keep the test board at th PCB thickness: 1.6mm	e limit point in 5 sec.	
Bending Test	10	20 R340	Unit :mm .2	
	No indication of peeling shall occur on the terminal electrode.	W(kgf)	TIME(sec)	
Terminal Adhesion Test		0.5	10±1	
Drop Test	No mechanical damage Inductance change to be within ±20% to the initial.	Random Free Fall test or 1 meter, 10 drops	n concrete plate.	

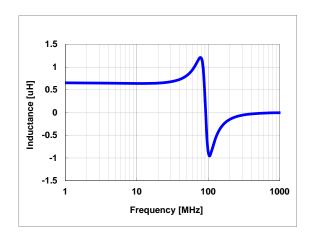
Metal Composite Power Inductor (Thin Film) Data Sheet

1. Model: CIGT252012LMR68MNE

2. Description

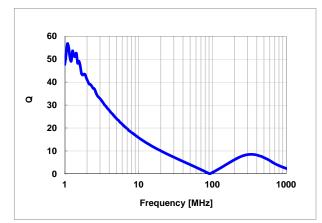
Part no.	Size Thickness [mm] (max)		Inductance	tolerance	DC Resist	ance [mΩ]	Rated DC Cu	rrent (Isat) [A]	Rated DC Cu	rrent (Irms) [A]
Tait no.) [uH]	(%)	Max.	Тур.	Max.	Тур.	Max.	Тур.	
CIGT252012LMR68MNE	1008/2520	1.2	0.68	±20	33	28	4	4.7	3.56	4

^{*} Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)

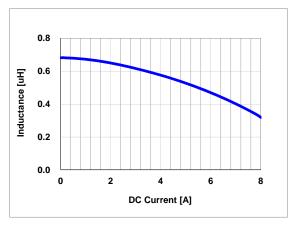

(Isat) : Allowable current in DC saturation : The DC saturation allowable current value is specified when the decrease of the initial inductance value at 30% (Reference: ambient temperature is 25℃±10)

(Irms) : Allowable current of temperature rise : The temperature rise allowable current value is specified when temperature of the inductor is raised 40℃ by DC current. (Reference: ambient temperature is 25℃±10)

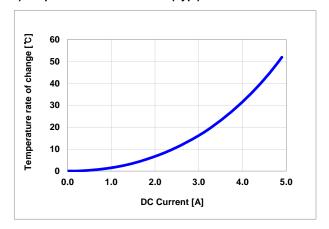
3. Characteristics data


1) Frequency characteristics (Ls)

Agilent E4294A +E4991A , 1MHz to 1,000MHz



2) Frequency characteristics (Q)


Agilent E4294A +E4991A , 1MHz to 1,000MHz

3) DC Bias characteristics (Typ.)

4)Temperature characteristics (Typ.)

^{*} DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent

^{*} Maximum allowable DC current: Value defined when DC current flows and the initial value of inductance has decreased by 30% or when current flows and temperature has risen to 40°C whichever is smaller. (Reference: ambient temperature is 25°C±10)

^{*} Absolute maximum voltage : Absolute maximum voltage DC 20V.

^{*} Operating temperature range : -40 to +125°C (Including self-temperature rise)