

STD3N95K5AG

Automotive-grade N-channel 950 V, 4.3 Ω typ., 2 A MDmesh™ K5 Power MOSFET in a DPAK package

Datasheet - production data

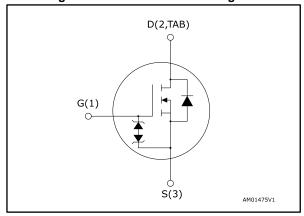
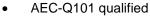




Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD	P _{tot}
STD3N95K5AG	950 V	5.0 Ω	2 A	45 W

- Industry's lowest R_{DS(on)} x area
- Industry's best FoM (figure of merit)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code		Marking	Package	Packing	
	STD3N95K5AG	3N95K5	DPAK	Tape and reel	

HTRB test has been performed at 80% of $V_{(BR)DSS}$ according to AEC-Q101 rev. C. All the other tests have been done according to the AEC-Q101 rev. D.

Contents STD3N95K5AG

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	DPAK (TO-252) type A package information	9
	4.2	DPAK (TO-252) packing information	12
5	Revisio	n history	14

STD3N95K5AG Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Symbol Parameter		Unit
V _G s	Gate-source voltage	±30	V
I _D	Drain current (continuous) at T _C = 25 °C	2	Α
I _D	Drain current (continuous) at T _C = 100 °C	1.3	Α
I _{DM} ⁽¹⁾	Drain current pulsed	3	Α
P _{TOT}	Total dissipation at T _C = 25 °C	45	W
dv/dt (2)	Peak diode recovery voltage slope	4.5	V/ns
dv/dt (3)	MOSFET dv/dt ruggedness	50	V/ns
Tj	Operating junction temperature range	-55 to 150	°C
T _{stg}	Storage temperature range	-55 10 150	

Notes:

Table 3: Thermal data

Symbol Parameter		Value	Unit	
R _{thj-case}	R _{thj-case} Thermal resistance junction-case			
R _{thj-pcb} (1)	Thermal resistance junction-pcb	50	°C/W	

Notes:

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by $T_{\text{jmax.}}$)	1	Α
Eas	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	50	mJ

⁽¹⁾Pulse width limited by safe operating area.

 $^{^{(2)}}I_{SD} \leq 2$ A, di/dt \leq 100 A/µs, V_{DS} (peak) \leq V(BR)DSS

 $^{^{(3)}}V_{DS} \le 760 \text{ V}$

⁽¹⁾When mounted on 1 inch² FR-4, 2 Oz copper board

Electrical characteristics STD3N95K5AG

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 5: On/off-state

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	950			V
		V _{DS} = 950 V, V _{GS} = 0 V			1	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{DS} = 950 \text{ V}, V_{GS} = 0 \text{ V}$ $T_{C} = 125 ^{\circ}\text{C}^{(1)}$			50	μΑ
I _{GSS}	Gate body leakage current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 1 \text{ A}$		4.3	5.0	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	105	1	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$	-	9	ı	pF
Crss	Reverse transfer capacitance	V 63 – V V	-	0.8	1	pF
C _{o(tr)} (1)	Equivalent capacitance time related	V _{GS} = 0 V,	-	16	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	V _{DS} = 0 to 760 V		6	1	pF
Rg	Intrinsic gate resistance	f = 1 MHz open drain	-	16	ı	Ω
Q_g	Total gate charge	$V_{DD} = 760 \text{ V}, I_D = 2 \text{ A}$	-	3.4	ı	nC
Q_{gs}	Gate-source charge	V _{GS} = 0 to 10 V	-	0.9	-	nC
Q_gd	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior")	-	2.2	-	nC

Notes:

⁽¹⁾Defined by design, not subject to production test.

 $^{^{(1)}}$ Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

 $^{^{(2)}}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 475 V, I_{D} = 1 A, R_{G} = 4.7 Ω	-	8.5	-	ns
tr	Rise time	V _{GS} = 10 V (see Figure 14: "Test circuit for resistive load switching times"		13.5	-	ns
t _{d(off)}	Turn-off delay time			20.5	-	ns
t _f	Fall time	and Figure 19: "Switching time waveform")	-	32.5	-	ns

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		2	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		3	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 2 A, V _{GS} = 0 V	-		1.5	V
t _{rr}	Reverse recovery time	$I_{SD} = 2 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	300		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for	-	1.15		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	7.6		Α
t _{rr}	Reverse recovery time	$I_{SD} = 2 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	525		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C}$ (see Figure 16: "Test circuit for	-	1.90		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	7.2		Α

Notes:

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
$V_{(BR)GSO}$	Gate-source breakdown voltage	I _{GS} = ±1 mA, I _D = 0 A	±30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

⁽¹⁾Pulse width limited by safe operating area.

 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 2: Safe operating area GIPG250520171203SCA (A) Operation in this area is limited by $R_{DS(on)}$ $t_p=100~\mu s$ $t_p=100~\mu s$

Figure 3: Thermal impedance

K $\delta = 0.5$ $\delta = 0.2$ $\delta = 0.05$ $\delta = 0.02$ $\delta = 0.01$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.01$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.01$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.01$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.03$ $\delta = 0.02$ $\delta = 0.03$ δ

Figure 4: Output characteristics

(A)

3.0

2.5

2.0

1.5

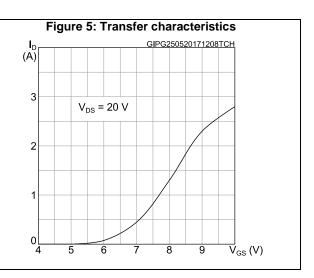
V_{GS}=9, 10 V

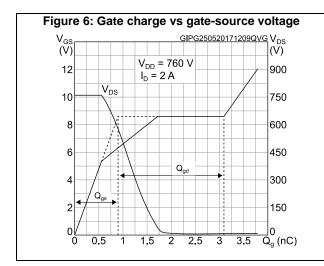
V_{GS}=8 V

1.0

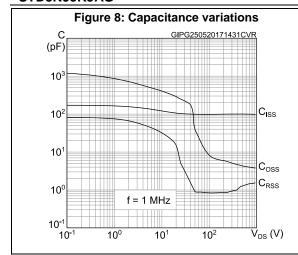
0.5

0.0


5


10


15


20

V_{DS} (V)

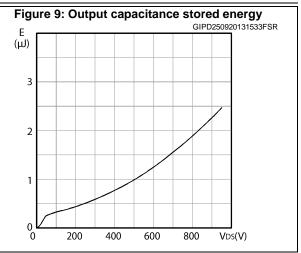
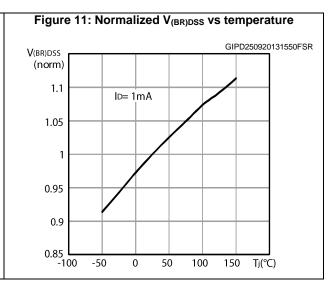
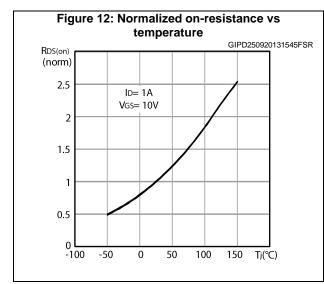
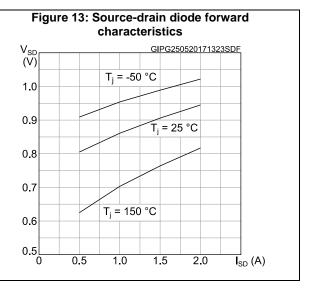


Figure 10: Normalized gate threshold voltage vs temperature

VGS(th) GIPD250920131539FSR


1 0.8 0.6


50


100

150

Tj(°C)

0.4 L -100 Test circuits STD3N95K5AG

3 Test circuits

Figure 14: Test circuit for resistive load switching times

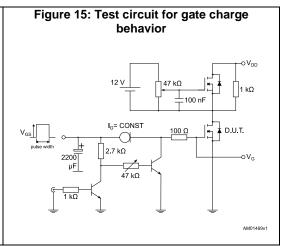
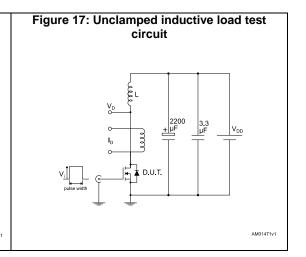
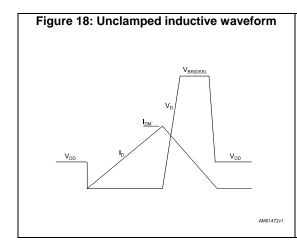
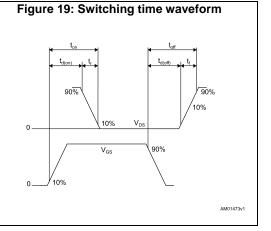





Figure 16: Test circuit for inductive load switching and diode recovery times

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 DPAK (TO-252) type A package information

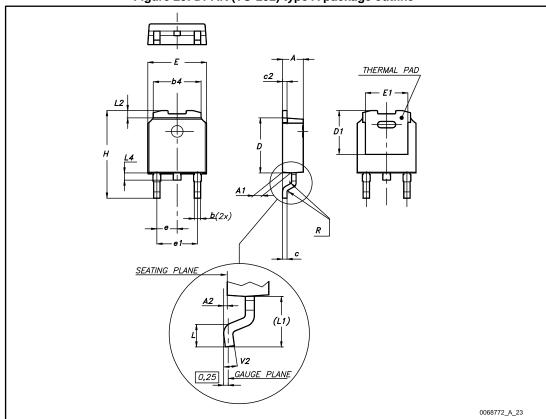


Figure 20: DPAK (TO-252) type A package outline

Table 10: DPAK (TO-252) type A mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
А	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1	4.95	5.10	5.25		
Е	6.40		6.60		
E1	4.60	4.70	4.80		
е	2.16	2.28	2.40		
e1	4.40		4.60		
Н	9.35		10.10		
L	1.00		1.50		
(L1)	2.60	2.80	3.00		
L2	0.65	0.80	0.95		
L4	0.60		1.00		
R		0.20			
V2	0°		8°		

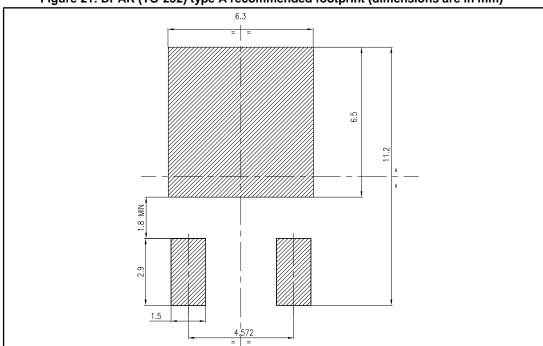
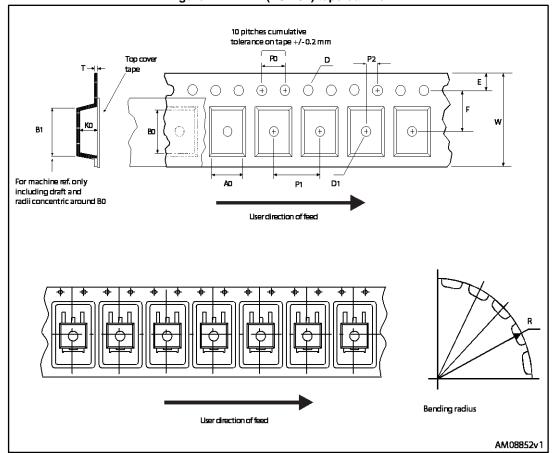



Figure 21: DPAK (TO-252) type A recommended footprint (dimensions are in mm)

FP_0068772_23

4.2 DPAK (TO-252) packing information

Figure 22: DPAK (TO-252) tape outline

40mm min. access hole at slot location

Tape slot in core for tape start 2.5mm min. width

Figure 23: DPAK (TO-252) reel outline

Table 11: DPAK (TO-252) tape and reel mechanical data

Таре			Reel				
Dim.	mm		Dim.	mm			
	Min.	Max.	Dilli.	Min.	Max.		
A0	6.8	7	А		330		
В0	10.4	10.6	В	1.5			
B1		12.1	С	12.8	13.2		
D	1.5	1.6	D	20.2			
D1	1.5		G	16.4	18.4		
E	1.65	1.85	N	50			
F	7.4	7.6	Т		22.4		
K0	2.55	2.75					
P0	3.9	4.1	Base qty. 2500		2500		
P1	7.9	8.1	Bulk qty. 2500		2500		
P2	1.9	2.1					
R	40						
Т	0.25	0.35					
W	15.7	16.3					

AM06038v1

Revision history STD3N95K5AG

5 Revision history

Table 12: Document revision history

Date	Revision	Changes
06-Jun-2017	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved