

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

August 2016

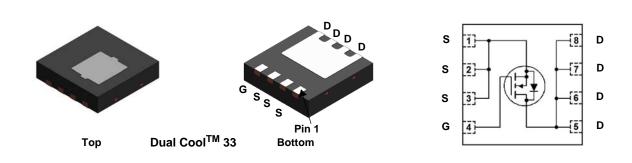
FDMC8010DC N-Channel Dual CoolTM 33 PowerTrench[®] MOSFET

FDMC8010DC

N-Channel Dual CoolTM 33 PowerTrench[®] MOSFET

30 V, 157 A, 1.28 mΩ

Features


- Dual CoolTM Top Side Cooling PQFN package
- Max $r_{DS(on)}$ = 1.28 m Ω at V_{GS} = 10 V, I_D = 37 A
- Max $r_{DS(on)}$ = 1.74 m Ω at V_{GS} = 4.5 V, I_D = 32 A
- High Performance Technology for Extremely Low r_{DS(on)}
- RoHS Compliant

General Description

This N-Channel MOSFET is produced using Fairchild PowerTrench® Semiconductor's advanced process. Advancements in both silicon and Dual $\mathsf{Cool}^\mathsf{TM}$ package technologies have been combined to offer the lowest r_{DS(on)} while maintaining excellent switching performance by extremely low Junction-to-Ambient thermal resistance.

Applications

- Load Switch
- Motor Bridge Switch
- Synchronous Rectifier

MOSFET Maximum Ratings $T_A = 25 \text{ °C}$ unless otherwise noted.

Symbol		Parame	eter		Ratings	Units
V _{DS}	Drain to Source	Voltage			30	V
V _{GS}	Gate to Source \	/oltage		(Note 4)	±20	V
I _D	Drain Current	-Continuous	T _C = 25 °C	(Note 6)	157	
		-Continuous	T _C = 100 °C	(Note 6)	99	A
		-Continuous	T _A = 25 °C	(Note 1a)	37	A
		-Pulsed		(Note 5)	788	
E _{AS}	Single Pulse Ava	alanche Energy		(Note 3)	337	mJ
D	Power Dissipatio	n	T _C = 25 °C		50	w
P _D	Power Dissipatio	n	T _A = 25 °C	(Note 1a)	3.0	vv
T _J , T _{STG}	Operating and S	torage Junction Tempera	ature Range		-55 to +150	°C

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	2.5	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	42	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
8010	FDMC8010DC	Dual Cool TM 33	13 "	12 mm	3000 units

1

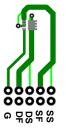
FDMC8010DC
N-Channel Dual Cool
Dual Cool ^{TI}
^M 33 PowerTre
Trench [®] MOSFET

-

	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, referenced to 25 °C		17		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			10	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
On Chara	acteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$	1.0	1.4	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		-5		mV/°C
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 37 \text{ A}$		0.91	1.28	
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 32 \text{ A}$		1.2	1.74	mΩ
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 37 \text{ A}, \text{ T}_{J} = 125 \text{ °C}$		1.34	1.89	
9 _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, \ \text{I}_{D} = 37 \text{ A}$		231		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			4720	7080	pF
C _{oss}	Output Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ = 1 MHz		1540	2310	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1 10112		136	205	pF
Rg	Gate Resistance		0.1	0.5	1.1	Ω
Switchin	g Characteristics					
t _{d(on)}	Turn-On Delay Time			15	26	ns
t _r	Rise Time	V _{DD} = 15 V, I _D = 37 A,		7	14	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		40	64	ns
t _f	Fall Time			5	10	ns
Q _{g(TOT)}	Total Gate Charge at 10 V			67	94	nC
Q _{g(TOT)}	Total Gate Charge at 4.5 V			32	44	nC
Q _{gs}	Total Gate Charge	– V _{DD} = 15 V, I _D = 37 A		10		nC
Q _{gd}	Gate to Drain "Miller" Charge			7.5		nC
	urce Diode Characteristics					
טט-טומוע						

V Sc	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 2.3 A$ (Note 2)		0.7	1.2	V
VSD	Source to Drain Diode Porward Voltage	$V_{GS} = 0 V, I_S = 37 A$ (Note 2)		0.8	1.3	
t _{rr}	Reverse Recovery Time	I = 27 A di/dt = 100 A/up		55	88	ns
Q _{rr}	Reverse Recovery Charge	I _F = 37 A, di/dt = 100 A/μs		48	76	nC

Thermal Characteristics


R_{\thetaJC}	Thermal Resistance, Junction to Case	(Top Source)	5.0	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	2.5	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	42	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	105	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1c)	29	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1d)	40	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1e)	19	00000
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1f)	23	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1g)	30	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1h)	79	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1i)	17	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1j)	26	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1k)	12	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1I)	16	

Notes:

1. R_{0JA} is determined with the device mounted on a FR-4 board using a specified pad of 2 oz copper as shown below. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

a. 42 °C/W when mounted on a 1 in² pad of 2 oz copper

b. 105 °C/W when mounted on a minimum pad of 2 oz copper

g. 200FPM Airflow, No Heat Sink,1 in² pad of 2 oz copper

h. 200FPM Airflow, No Heat Sink, minimum pad of 2 oz copper

i. 200FPM Airflow, 20.9x10.4x12.7mm Aluminum Heat Sink, 1 in² pad of 2 oz copper

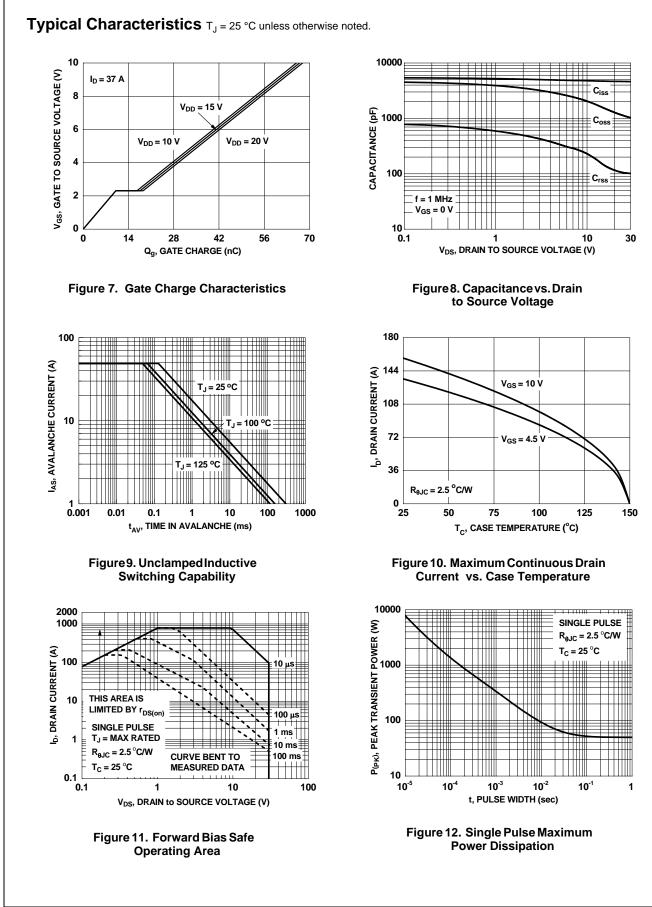
d. Still air, 20.9x10.4x12.7mm Aluminum Heat Sink, minimum pad of 2 oz copper

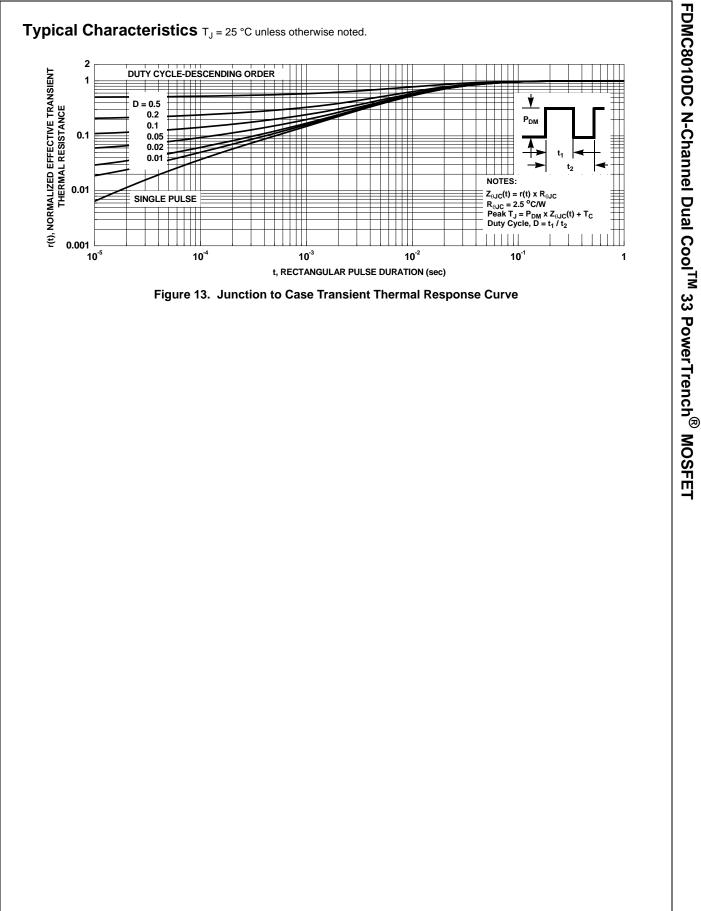
j. 200FPM Airflow, 20.9x10.4x12.7mm Aluminum Heat Sink, minimum pad of 2 oz copper

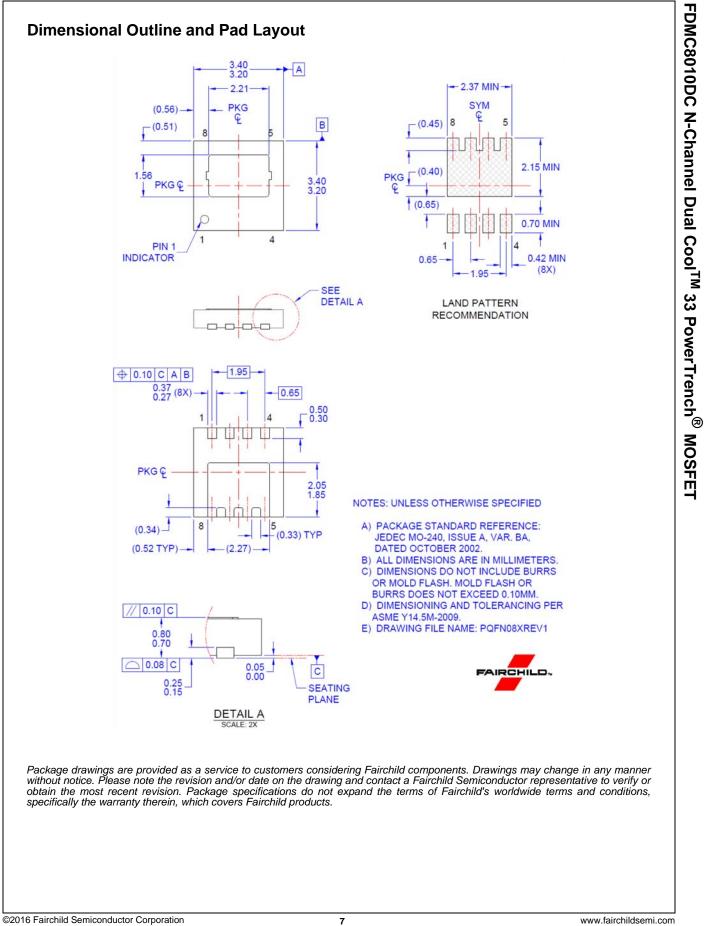
k. 200FPM Airflow, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper

e. Still air, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper f. Still air, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper


I. 200FPM Airflow, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper


2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. 3. E_{AS} of 337 mJ is based on starting T_J = 25 °C, L = 3 mH, I_{AS} = 15 A, V_{DD} = 30 V, V_{GS} = 10 V, 100% test at L = 0.1 mH, I_{AS} = 49 A.


4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.


5. Pulse Id measured at 250μ s, refer to Fig 11 SOA graph for more details.

6. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM AttitudeEngine TM Awinda [®] AX-CAP [®] * BitSiC TM Build it Now TM CorePLUS TM CorePOWER TM COMPACE COREPOWER TM COREPOWER	$\begin{array}{l} F\text{-} FFS^{TM} \\ FRFET^{\circledast} \\ Global Power Resource^{SM} \\ Green Bridge^{TM} \\ Green FPS^{TM} \\ Green FPS^{TM} \\ e\text{-}Series^{TM} \\ Grean FPS^{TM} \\ e\text{-}Series^{TM} \\ Gro^{TM} \\ IsOPLANAR^{TM} \\ IsOPLANAR^{TM} \\ Marking Small Speakers Sound Louder \\ and Better^{TM} \\ Marking Small Speakers Sound Louder \\ and Better^{TM} \\ MicroPaBuck^{TM} \\ MicroPak^{TM} \\ MicroPak2^{TM} \\ MicroPak2^{TM} \\ MillerDrive^{TM} \\ MotionMax^{TM} \\ MotionMax^{TM} \\ MotionMax^{TM} \\ MotionMax^{TM} \\ MotionMax^{TM} \\ MVN^{\circledast} \\ mWSaver^{\circledast} \\ OptOHiT^{TM} \\ OptOLOGIC^{\circledast} \end{array}$	OPTOPLANAR [®] $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
---	---	---	---

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

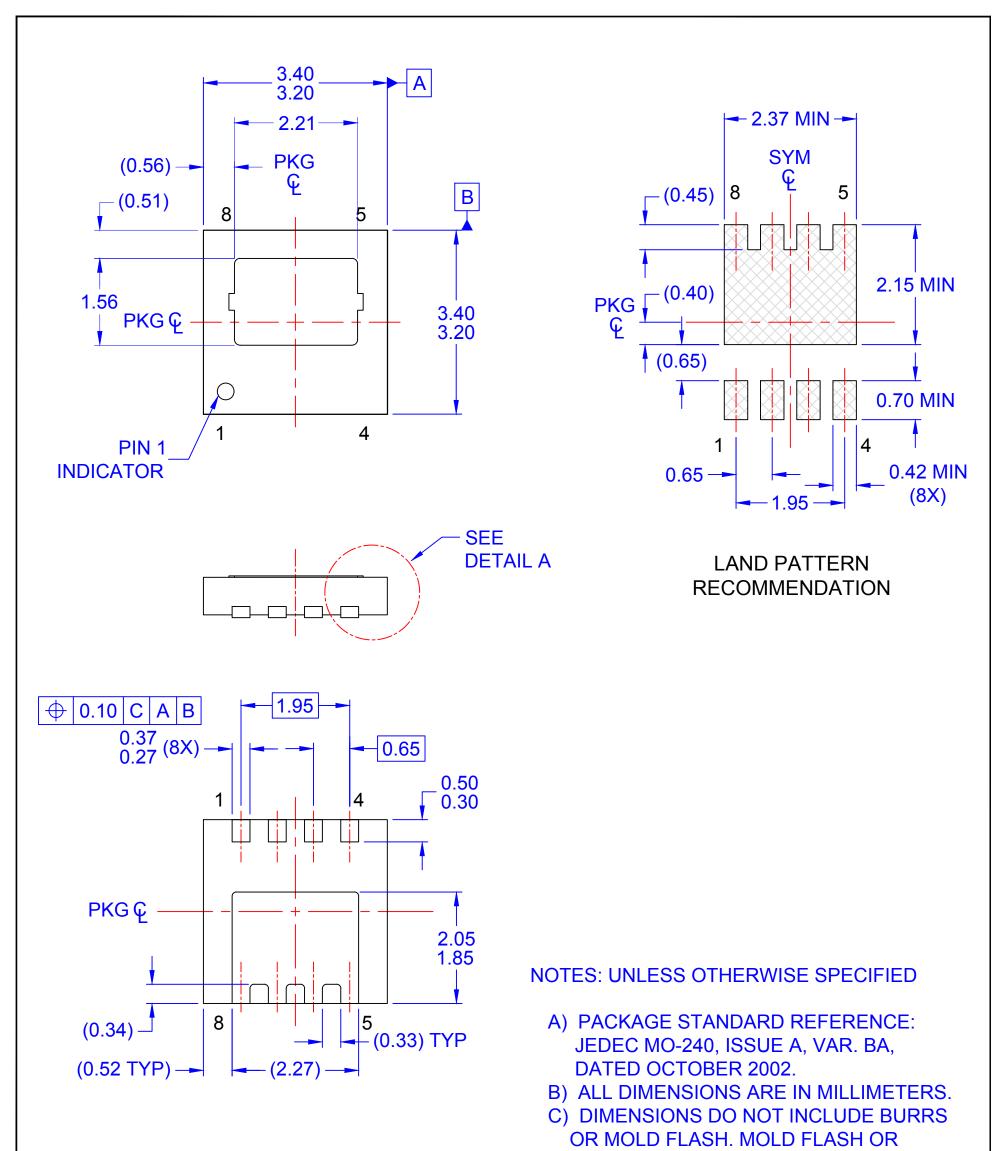
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

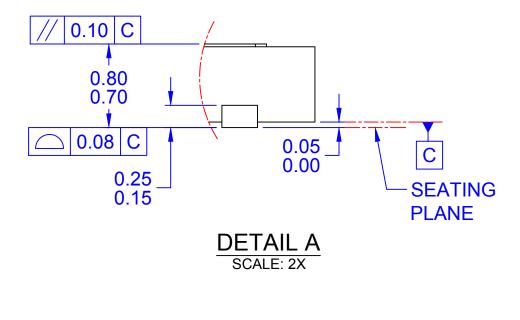
AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use


Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly form Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.


PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification Product Status		Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177

BURRS DOES NOT EXCEED 0.10MM.D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009.E) DRAWING FILE NAME: PQFN08XREV1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC