2.5V Drive Nch+SBD MOS FET

QS5U17

- Structure

Silicon N-channel MOSFET
Schottky Barrier DIODE

- Features

1) The QS5U17 combines Nch MOSFET with a Schottky barrier diode in a single TSMT5 package.
2) Low on-state resistance with fast switching.
3) Low voltage drive (2.5 V).
4) The Independently connected Schottky barrier diode has low forward voltage.

-Applications

Load switch, DC / DC conversion

-Packaging specifications

Type	Package	Taping
	Code	TR
	Basic ordering unit (pieces)	3000
QS5U17		\bigcirc

- External dimensions (Unit : mm)

\bullet Equivalent circuit

Transistors

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
<MOSFET>

Parameter		Symbol	Limits	Unit
Drain-source voltage		V ${ }_{\text {dss }}$	30	V
Gate-source voltage		Vass	12	V
Drain current	Continuous	ID	± 2.0	A
	Pulsed	ldp *1	± 8.0	A
Source current (Body diode)	Continuous	Is	0.8	A
	Pulsed	IsP *1	3.2	A
Channel temperature		Tch	150	${ }^{\circ} \mathrm{C}$
Power dissipation		Pd *3	0.9	W/ELEMENT
<Di>				
Repetitive peak reverse voltage		VRM	25	V
Reverse voltage		$V_{\text {R }}$	20	V
Forward current		IF	1.0	A
Forward current surge peak		IFSM *2	3.0	A
Junction temperature		Tj	150	${ }^{\circ} \mathrm{C}$
Power dissipation		Pd *3	0.7	W/ELEMENT
<MOSFET AND Di>				
Total power dissipation		Pd *3	1.25	W / TOTAL
Range of Storage temperature		Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$

-Electrical characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
<MOSFET>

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Gate-source leakage	lass	-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V} / \mathrm{V}_{\text {ds }}=0 \mathrm{~V}$
Drain-source breakdown voltage	$\mathrm{V}_{\text {(BR) DSS }}$	30	-	-	V	$\mathrm{Id}_{\mathrm{D}}=1 \mathrm{~mA}, / \mathrm{V}_{\mathrm{Gs}}=0 \mathrm{~V}$
Zero gate voltage drain current	loss	-	-	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V} / \mathrm{V}_{\mathrm{Gs}}=0 \mathrm{~V}$
Gate threshold voltage	$\mathrm{V}_{\text {GS }}(\mathrm{n})$	0.5	-	1.5	V	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} / \mathrm{lo}=1 \mathrm{~mA}$
Static drain-source on-state resistance	Ros (on)*	-	71	100	$\mathrm{m} \Omega$	$\mathrm{ID}=2.0 \mathrm{~A}, \mathrm{VGS}=4.5 \mathrm{~V}$
		-	76	107	$\mathrm{m} \Omega$	$\mathrm{ld}=2.0 \mathrm{~A}, \mathrm{Vas}=4 \mathrm{~V}$
		-	110	154	$\mathrm{m} \Omega$	$\mathrm{ID}=2.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=2.5 \mathrm{~V}$
Forward transfer admittance	$\left\|Y_{\text {is }}\right\|^{*}$	1.5	-	-	S	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{ld}=2.0 \mathrm{~A}$
Input capacitance	Ciss	-	175	-	pF	$\begin{array}{\|l\|} \hline V_{\mathrm{DS}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \\ \hline \end{array}$
Output capacitance	Coss	-	50	-	pF	
Reverse transfer capacitance	Crss	-	25	-	pF	
Turn-on delay time	$\mathrm{td}_{\text {d (on) }}$ *	-	8	-	ns	$\mathrm{l}=1.0 \mathrm{~A}$ $V D D=15 \mathrm{~V}$ $\mathrm{Vas}=4.5 \mathrm{~V}$ $\mathrm{RL}=15 \Omega$ $\mathrm{Rg}=10 \Omega$
Rise time	tr	-	10	-	ns	
Turn-off delay time	$\mathrm{td}_{\text {(off) }}$ *	-	21	-	ns	
Fall time	tf	-	8	-	ns	
Total gate charge	Q_{g}	-	2.8	3.9	nC	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~A} \\ & \hline \end{aligned}$
Gate-source charge	Qgs^{*}	-	0.6	-	nC	
Gate-drain charge	Q_{gd} *	-	0.8	-	nC	

*Pulsed
<Body diode (source-drain)>

Forward voltage	VsD	-	-	1.2	V	$\mathrm{Is}=3.2 \mathrm{~A} / \mathrm{VGS}=0 \mathrm{~V}$
*Pulsed						

<Di>
Forward voltage
Reverse current

-Electrical characteristic curves

<MOSFET>

Fig. 1 Typical Transfer Characteristics

Fig. 2 Static Drain-Source On-State Resistance vs. Drain Current

Fig. 3 Static Drain-Source On-State Resistance vs. Drain Current

Fig. 5 Static Drain-Source On-State Resistance vs. Gate-Source Voltage

Fig. 6 Static Drain-Source On-State Resistance vs. Drain Current

Fig. 7 Reverse Drain Current vs. Source-Drain Current

Fig. 8 Typical Capacitance vs. Drain-Source Voltage

Fig. 9 Switching Characteristics

Fig. 10 Dynamic Input Characteristics

Fig. 11 Forward Current vs. Forward Voltage

Fig. 12 Reverse Current vs. Reverse Voltage

-Measurement circuits

Fig. 13 Switching Time Measurement Circuit

Fig. 15 Gate Charge Measurement Circuit

Fig. 14 Switching Waveforms

Fig. 16 Gate Charge Waveform

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

