

Is Now Part of

ON Semiconductor®

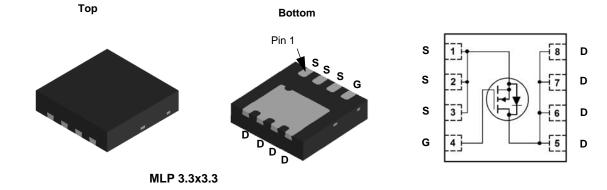
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

N-Channel PowerTrench[®] SyncFETTM 30 V, 21 A, 4.4 m Ω

Features

- Max $r_{DS(on)}$ = 4.4 m Ω at V_{GS} = 10 V, I_D = 19 A
- Max $r_{DS(on)}$ = 5.2 m Ω at V_{GS} = 4.5 V, I_D = 17.5 A
- Advanced package and silicon combination for low r_{DS(on)} and high efficiency
- SyncFET Schottky Body Diode
- MSL1 robust package design
- 100% UIL tested
- RoHS Compliant



General Description

The FDMC8026S has been designed to minimize losses in power conversion application. Advancements in both silicon and package technologies have been combined to offer the lowest $r_{\text{DS}(on)}$ while maintaining excellent switching performance.This device has the added benefit of an efficient monolithic schottky body diode.

Applications

- Synchronous Rectifier for DC/DC Converters
- Notebook Vcore/GPU low side switch
- Networking Point of Load low side switch
- Telecom secondary side rectification

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Param	eter		Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage		(Note 4)	±20	V	
	Drain Current -Continuous	$T_{\rm C} = 25^{\circ}{\rm C}$		21		
I _D	-Continuous	T _A = 25°C	(Note 1a)	19	Α	
	-Pulsed			100		
E _{AS}	Single Pulse Avalance Energy		(Note 3)	66	mJ	
P _D	Power Dissipation	$T_{\rm C} = 25^{\circ}{\rm C}$		36	10/	
	Power Dissipation	T _A = 25°C	(Note 1a)	2.4	W	
T _J , T _{STG}	Operating and Storage Junction Temperation	ature Range		-55 to +150	°C	

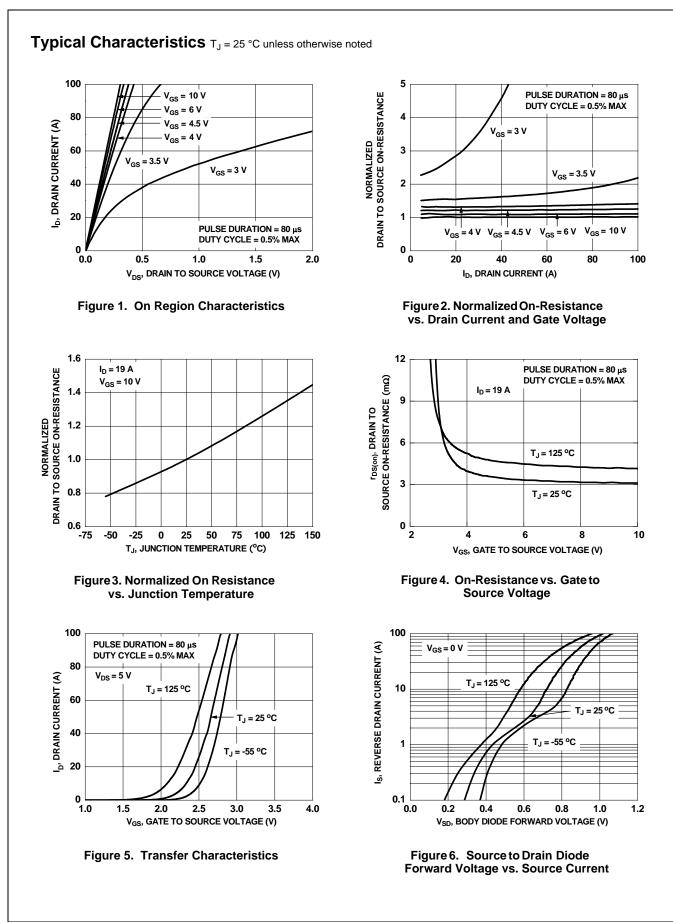
Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	3.4	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1a) 53	0/00

Package Marking and Ordering Information

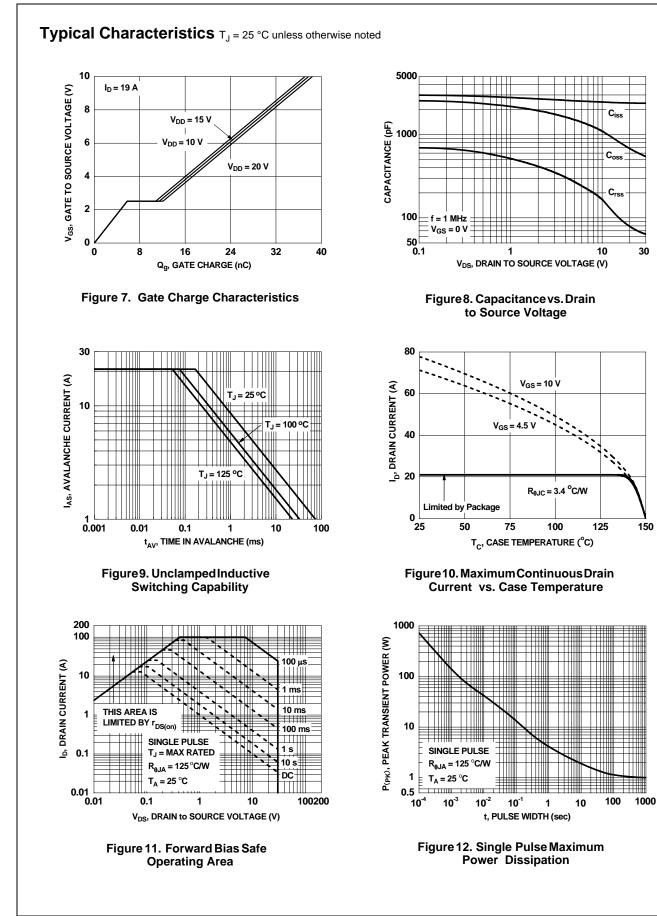
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC8026S	FDMC8026S	MLP 3.3X3.3	13 "	12 mm	3000 units

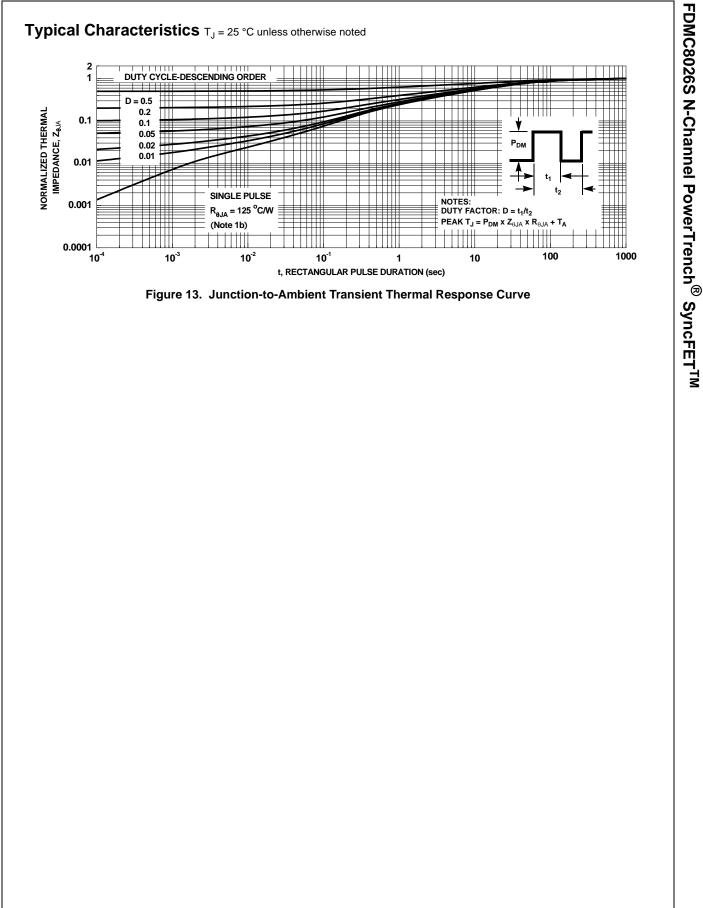
Off Chara BV _{DSS} ΔBV _{DSS} ΔT _J I _{DSS} I _{GSS}	Acteristics Drain to Source Breakdown Voltage	-		Тур	Max	Units
BV _{DSS} ΔBV _{DSS} ΔT _J						1
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ I_{DSS}	Brain to boarde Breakdown Voltage	I _D = 1 mA, V _{GS} = 0 V	30			V
ΔT _J I _{DSS}	Breakdown Voltage Temperature		50			-
	Coefficient	I_D = 10 mA, referenced to 25 °C		26		mV/°C
	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			500	μA
	Gate to Source Leakage Current, Forward	$V_{GS} = 20 V, V_{DS} = 0 V$			100	nA
On Chara	acteristics					
	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$	1.2	1.6	3.0	V
V _{GS(th)} ∆V _{GS(th)}	Gate to Source Threshold Voltage		1.2	1.0	5.0	v
ΔT_J	Temperature Coefficient	$I_D = 10$ mA, referenced to 25 °C		-5		mV/°C
0		V _{GS} = 10 V, I _D = 19 A		3.8	4.4	+
-	Static Drain to Source On Resistance	V _{GS} = 4.5 V, I _D = 17.5 A		4.5	5.2	mΩ
r _{DS(on)}		$V_{GS} = 10 \text{ V}, I_D = 19 \text{ A},$ $T_J = 125 \text{ °C}$		4.5	5.8	- 11152
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 19 A		106		S
Junamia	Characteristics					
-	Characteristics				0405	-
C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V,		2380	3165	pF
C _{oss}	Output Capacitance	_f = 1 MHz		885	1175	pF
C _{rss}	Reverse Transfer Capacitance		0.4	100	150	pF
R _g	Gate Resistance		0.1	0.7	2.5	Ω
Switching	g Characteristics					
	Turn-On Delay Time			11	20	ns
[[] d(on)						-
	Rise Time	V _{DD} = 15 V, I _D = 19 A,		5	10	ns
t _r		V_{DD} = 15 V, I _D = 19 A, V _{GS} = 10 V, R _{GEN} = 6 Ω		5 30		
r d(off)	Rise Time			-	10	ns
r d(off)	Rise Time Turn-Off Delay Time			30	10 48	ns ns
^t r ^t d(off) ^t f Q _g	Rise Time Turn-Off Delay Time Fall Time	$V_{GS} = 10 \text{ V}, \text{R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V} \text{ to } 10 \text{ V}$		30 4	10 48 10	ns ns ns
t <mark>r td(off) tf Qg Qg</mark>	Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	$V_{GS} = 10 V, R_{GEN} = 6 \Omega$		30 4 37	10 48 10 52	ns ns ns nC
t _r t _{d(off)} t _f Q _g Q _g Q _{gs}	Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge	$V_{GS} = 10 \text{ V}, \text{R}_{\text{GEN}} = 6 \Omega$ $V_{\text{GS}} = 0 \text{ V to } 10 \text{ V}$ $V_{\text{GS}} = 0 \text{ V to } 4.5 \text{ V}$ $V_{\text{DD}} = 15 \text{ V},$		30 4 37 18	10 48 10 52	ns ns ns nC nC
t _r td(off) tf Qg Qg Qgs Qgs Qgd	Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$V_{GS} = 10 \text{ V}, \text{R}_{\text{GEN}} = 6 \Omega$ $V_{\text{GS}} = 0 \text{ V to } 10 \text{ V}$ $V_{\text{GS}} = 0 \text{ V to } 4.5 \text{ V}$ $V_{\text{DD}} = 15 \text{ V},$		30 4 37 18 6	10 48 10 52	ns ns nC nC nC
t _{d(on)} tr t _{d(off)} tf Q _g Q _g Q _{gs} Q _{gd} Drain-So	Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $V_{DD} = 15 \text{ V},$ $I_{D} = 19 \text{ A}$		30 4 37 18 6 6	10 48 10 52 25	ns ns nC nC nC
tr td(off) tf Qg Qg Qgs Qgd	Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $I_D = 15 \text{ V},$ $I_D = 19 \text{ A}$ $V_{GS} = 0 \text{ V}, \text{ I}_S = 2 \text{ A}$ (Note 2)		30 4 37 18 6 6 0.6	10 48 10 52 25 	ns ns nC nC nC
t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-So V _{SD}	Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge urce Diode Characteristics Source to Drain Diode Forward Voltage	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $V_{DD} = 15 \text{ V},$ $I_{D} = 19 \text{ A}$		30 4 37 18 6 6 6 0.6 0.8	10 48 10 52 25 0.8 1.2	ns ns nC nC nC v
r_r $d_{(off)}$ d_{g} Q_g Q_{gs} Q_{gd} Drain-So	Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge urce Diode Characteristics	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $I_D = 15 \text{ V},$ $I_D = 19 \text{ A}$ $V_{GS} = 0 \text{ V}, \text{ I}_S = 2 \text{ A}$ (Note 2)		30 4 37 18 6 6 0.6	10 48 10 52 25 	ns ns nC nC nC


2. Pulse Test: Pulse Width < 300 $\mu \text{s},$ Duty cycle < 2.0%.

00000

3. E_{AS} of 66 mJ is based on starting T_J = 25 °C, L = 0.3 mH, I_{AS} = 21 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% tested at L = 3 mH, I_{AS} = 10.2 A.


4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.


00000

3

FDMC8026S N-Channel PowerTrench[®] SyncFETTM

Typical Characteristics (continued)

SyncFET[™] Schottky body diode Characteristics

Fairchild's SyncFETTM process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 14 shows the reverse recovery characteristic of the FDMC8026S.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

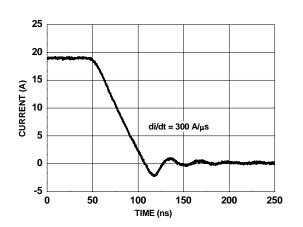
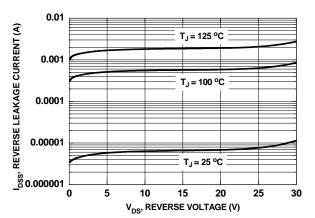
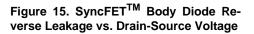
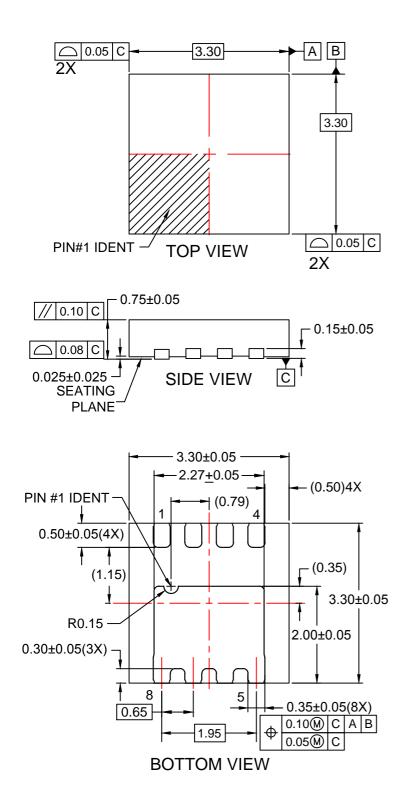
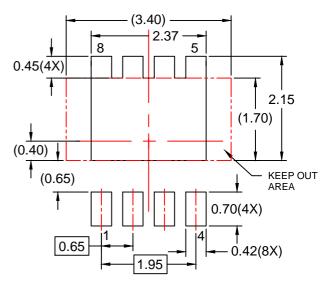






Figure 14. FDMC8026S SyncFET[™] Body Diode Reverse Recovery Characteristic

RECOMMENDED LAND PATTERN

NOTES:

- A. DOES NOT CONFORM TO JEDEC REGISTRATION MO-229
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- E. DRAWING FILENAME: MKT-MLP08Srev3.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC